Adenylyl cyclase AC8 directly controls its micro-environment by recruiting the actin cytoskeleton in a cholesterol-rich milieu.

نویسندگان

  • Laura J Ayling
  • Stephen J Briddon
  • Michelle L Halls
  • Gerald R V Hammond
  • Luis Vaca
  • Jonathan Pacheco
  • Stephen J Hill
  • Dermot M F Cooper
چکیده

The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trafficking of cholera toxin-ganglioside GM1 complex into Golgi and induction of toxicity depend on actin cytoskeleton.

Intestinal epithelial lipid rafts contain ganglioside GM1 that is the receptor for cholera toxin (CT). The ganglioside binds CT at the plasma membrane (PM) and carries the toxin through the trans-Golgi network (TGN) to the endoplasmic reticulum (ER). In the ER, a portion of the toxin unfolds and translocates to the cytosol to activate adenylyl cyclase. Activation of the cyclase leads to an incr...

متن کامل

اندازه‌گیری فعالیت آدنیلیل سیکلاز غشاء سلولی در حضور پروتئین کموتاکسیک ماکروفاژ

 Adenylyl cyclase is a membrane-bound enzyme that catalyzes the conversion of ATP to cAMP. The inhibition of adenylyl cyclase was carried out by measuring the ability of the macrophage chemotactic protein-1 to inhibit the forskolin-induced enzyme activity. Measurement of adenylyl cyclase activity was performed according to the procedure described by Wiegn.  Adenylyl cyclase activity in the pres...

متن کامل

The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in Dictyostelium.

Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling...

متن کامل

Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry

Adenylyl cyclases (ACs) are a family of critically important signaling molecules that are regulated by multiple pathways. Adenylyl cyclase 8 (AC8) is a Ca(2+) stimulated isoform that displays a selective regulation by capacitative Ca(2+) entry (CCE), the process whereby the entry of Ca(2+) into cells is triggered by the emptying of intracellular stores. This selectivity was believed to be achie...

متن کامل

Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation.

Mossy fiber/CA3 long-term potentiation (LTP) is hypothesized to depend on cAMP signals generated by Ca2+-stimulated adenylyl cyclases AC1 or AC8. AC1 gene knock-out mice (AC1-/-) show a partial reduction in mossy fiber LTP, suggesting that either AC8 activity is also critical for mossy fiber LTP or that there is a component of mossy fiber LTP that is independent of CaM-activated adenylyl cyclas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 125 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2012